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As -oted above, this system may !e linearized about a state

ot rest. For this purpose we , y define mean values which

represent the equilibrium ot the qround state and perturbation

qu4nttttes which oscillate about this state. We therefore ,Iefine

the totlowLng variables:

I -Ittl~y, ,w. , Oi(l)

* I t*A

..0ta th..t I , ,, -- * 4 * 410-. Linv..rising (1-5) and including

l ~I, we i tihw tllowinq systom ,)f equations:
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'or moki $24 tP r<ttLo 's only two !ur.-ot trtm anity wht-rc4s tot

*132 Lt %S3 !,ICtkor Of fO$r. Ir.~~ng IqY. rMglie Ill ItIYSM. I I

VAILeS Of te4t str d lt tf-renov-iK ite cooi'-e with ufilt v.w, u-S.

of tht- mrre 14tton Coe" !tIctent. in lltlt i qsl trJt4 I*hvrSJC'.I Mk+q-: .

oIr these se o'ts t!* rt io-ot lr,--u.++(y ls .1l,6r) re'.son.itbly <-(.'"

to &Mtty. sut5ti3ot it1 ing our Inte-rprt ti+ ton of tf,1-:r pty+Vc.

flat 4re.

'Tk sh~ooting owthad has ho.*t'n aptlit-4 using a SO ierom1'vni

for nteqrAt ion from equator to pole, a valuo which corrsponti-

to- the Increment used to solve the original difi'rrenct

rqu.tUtons. Pecaust we felt that such an increment was too

coarse we testtd the process with much smailler intervals. the

smallest representinq 0.01 d.grees of latitur. The results o

that experiment were striking. As tte increment was decreased

from five deqrees, the solutions dettrorated, Rhowinq the worst

retsults for an increment of one dearre. As the increment was

further decreased, the results improved qradually. W_ concluded

that the five deqree increment for wich we qave a demonstration

was satisfactory and could not be sionificantly improv-d upon.

For the high index modes (Nos. 15-21) our statistics do not

indicate any physical modes. 11owever, Fiq.lO suqiests that some

of these modes may by physical. To eliminate this ambiguity, we

have modified the shootinq method, hopefully to make it more

sensitive to high index solutions. vather than reducina (17) to

two first order equations as was donc in (18), we reduce the

entire .set to a single second order rjuation in one dependent

variable, say - . This equation may he expressed as follows:



* PI ~ * l~ 0

(19)

Pil -+ " tafn;

(V2 ~f f~ (1 ~ 2(2

C. C082 v-ff 2

Utilizinq (19) as the shoting equation, two initial values are

require.d. These were chose, as the values of at the equator

and at the first point (50 ;at). For this modified procedurt!

various increments were also tested, but ajain such variation had

little impact on the soluti.n.

Results for high index modes using this procedure are

described in Table 5 which is identical to Table 4 except for the

shooting method applied. It is evident by noting the correlation

coefficient for modes 16, ld, 20 and 21 that the new technique is

considerably more ;ensitive in this range, and that the

correlation coefficient, as well as the other parameters,

identifies these modes as physical rather than computational.

This effectiveness of system (19) has been tested on other

planetary waves and vertical modes with equivalent success, as

.,ell as for the finite-elemcnt method, the results of which are

described on Table 6.

Consequently, we have letermined that the appropriate

shootinq method to use is based on system (19). We have checked

caretully to establish that this procedure also successfully
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Table 5. Statistics on results with the modified shootinq inethod
Fq. (19). All other conditons ire t'ie. samu as for T aj'1a 4.

No. Index ts tm fm/f 1.. C. C.

1I 8.47 0.37 0.99 0.r37 -0.49
12 * 8.46 9.47 1.12 0.51 -0.33
13 3 ,17 8.06 0.99 O.85 -0.47
14 * 8.11 7.64 0.94 0.69 -0.29
15 * 7.99 9.12 1.14 O.H3 0.23
16 II 7.88 8.06 1.02 0.22 0.95
17 * 7.69 8.79 t.14 0.75 -0.08
18 10 7.59 7.66 1.01 0.11 0.99
19 * 7.27 7.49 1.03 0.90 -0.03
20 9 7.25 7.27 1.00 0.06 1.00
21 8 6.87 6.85 1.00 u.03 1.00
22 * 6.75 3.72 0.55 0.87 -0.02
23 7 6.46 6.43 1.00 0.01 1.00
24 * 6.16 8.27 1.34 0.87 -0.06
25 6 6.03 6.00 0.99 0.01 1.00

',1
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Tat)le 6. Siaw as l, th- ' -c cet for tinit,-,-l ,-ment expansion.

%o. Index to fm  tm/fs L.. C. C.

11 10.00 9.78 0.98 0.05 0.91
12 * 9.99 10.00 1.01 0.21 0.57
13 9.78 11.33 1.16 4.01 -0.01
14 9.67 9.73 1.01 0.63 0.01
15 9.49 11.64 1.23 40.22 -0.02
16 9.14 9.47 1.04 0.75 -0.41
17 9.12 14.07 1.54 1* 0.32
18 12 8.75 8.44 0.96 0.01 0.99
L9 * 8.36 8.27 0.99 0.75 -0.06
20 11 8.34 8.06 0.97 0.01 0.99
21 10 7.91 7.6b 0.97 0.00 0.99
22 9 7.46 7.27 0.97 0.00 0.99
23 0 7.40 7.27 0.98 0.33 -0.04
24 8 7.01 6.86 0.98 0.00 1.00
25 7 6.55 6.41 0.98 0.00 1.00
26 6.26 6.59 1.05 1.12 -0.06
27 6 6.09 6.00 0.99 0.00 1.00
28 5 5.62 5.56 0.99 O.flO 1.00
29 4 5.15 5.11 0.99 0.00 1.30
30 * 4.96 3.72 0.75 0.33 -0.01
31 3 4.68 4.65 1.00 0.00 1.00
32 2 4.20 4.19 1.00 0.00 1.00
33 1 3.73 3.72 1.00 0.00 1.00
34 3.50 3.79 1.08 4.98 -0.00
35 0 3.24 3.24 1.00 0.00 1.00

Ik 't
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L entified the computatioral modes ir the= lower index ranq- ,as

was demonstrated for system (19). V, definitively identity all

possible computational modes we use all three of the parameters

specified; (a), (n), and (c). Where possible, we aln use the

index parameter since when the zero cronsinqs become too

frequent (-2}*) the solutions are clearly computationdl.

However, such a test is best done visually, and as such in not

only subject to human error, but is ilrohihitively time

consuming. Thus we- use the correlation coefficient as the prim.

parameter, notinq that unless Its value is greater than .9S, all

indications are that the representative structure is

computational. If the condition is met (c.c.>.95), the other two

criteria are checked for consistency. In this way we can

definitively identify and isolate all computational modes.

Finally, there are a set of modes which cannot exist

physically and must be computational; these include all the

eastward propagating Rossby modes. They may he identified

immediately from their frequency and the shooting method

corroborates this identification.
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17
u L(J ( If)) 2: ) , J ( dIi ).1-I zI

The pracess is nor. tiipl; j'i~".. s mat ra eqI~ot on ,1*4

Aii': ine the v.ari a)1e-S as :t)1 "SW. :4-t 2-t- a A.jtri W~th

e.lements U k.) 0iso dtmlns;on (1 7
ETDY 4nl et jO*a of thi

vertical structures tx* r,.prtmented by a vect-. 4 nine

elements (Gk(aI)) or 9 k . It we now d-.velop a matrix G which is

made up of all nine of the vectors Cke then w- have

I'm z !MG( 23)

where _Um is a matrix each o: whost- v+ctors represents the

projection onto the corresix)ninq vector of C. The latitudinal

structures of these vectors correspond to the profiles which are

analyzed by our model. We Nhall 4enote these vectors ) k where,

U1 =im, k (24).

It should be evident that there are nine such vectors for each

Foarier coefficient m. and t hat there aro in aldition an equal

number for both the v and u fields. "y stacking these vectors in

thu order defined by (20) w- -nay writ, a matrix of all variables

-As " Note that for each - and each k (vertical mode), the

vectors of , are createI b' first setting down all latitudinal

point values of u1m, followed by all iv, and finally by all 4,m/c.

The total length of these vctors is clearly Ill, and they may be
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verttc~l Niode 0 1k 4 vector ti the, lntitidan.01 .1rid. -V)

eat4, |tsh the contribution of this lw |I iAtj 4| pr,4fl. - to eitcti r

the rwmdel M040 in latitude, W- simply project the- d4tA v'-ctor%

faich we now have) onto thoIW model wm)des. Ist thoat mo,.-1

"tirpw Japand on th" f"Umrical process us-d to rp:es.nt the

moei.t so we must pro).'ct the' atA on both the- moles of the 4th-

onrrr s ytem as well as on those of the finit" et,.ent $yst(.m.

These model v'-ctors have been dicusoted in ",etion I and

Appendix C. They are the elio nvectorp of the- matrix 6 (%-c I-Ai.

17) and say be defined from

A - S 1 (l)

where! * is sad^ up of the vPCtorgS Thesr vectorR are

displayed oraphically by Fil. 10 for -*6 an k- (external Mode')

)ased on 4th- order differencini and on Fiq. II haed on finit-

element analysis. Proi_ tion of our rata vectors in terms of .

yields,

and finally, the projection awplitude are determined by
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nv,-rri,)n. Thus wi- can ,* thlish the- relative strength of each

ot 'h.- twdel modes k in .)ur data sample from,

t Mk(27)."mk - "m,k

It "Aust !e recalled that depends on the numerical method

applivt and that we have two separate matrices to consider.

We are now in a position to filter the given observational

data of contributions from computational modes. Thus, if the

filter-l data is utilized in a nonlinear version of the model for

which the filtered computational modes are representative, the

numerical inteqration of those filtered initial conditions should

show, hopefully, reduced computational effects. Since each of

the elements of represents the strength of the corresponding

vector in tho data set, let us first establish how much amplitude

of the data is involved in the computational modes. Recall that

we have determin,,d in Section 4 how computational modes are to be

AP f i ned.

To show how these amplitudes distribute amongst the modes,

we present Fi. 12 which is representative of wave m=6 and the

extornal vertical mode, k-l. The corresponding structures of the

nodos are presented on Fig. 10. On Fii. 12 we have connected the

physical modes by line segments. For this case of given (m,k),

41 of t'i 10') inod,.s are physical andl the remainder are

computat iona l. re ampl tude squared (F ) of them r,k)oth

computational modos when summd accounts for only 8.8% of the

total squared amplitude in the data. Since the physical
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variables represented are flow and geopotential, we may also

equate this squared amplitude to norm-ilized energy. That the

physical modes dominate is evident from Fig. 12. This will

hopefully be the case with the other scales (m,k). A similar

distribution for the finite-element method may be seen from Fig.

13.

We now reconstruct the latitudinal profiles of the data by

inverting Eq. (27), however discarding the amplitudes of the

computational modes. This is done by using only those values

of &m,k which represent physical modes in making the

calculation. Clearly in the example cited, 8.8% of the squared

amplitude of the data will be removed. These reconstructed

profiles are now in a format to be used as initial conditions for

numerical integration with our model. Fig. 14 describes how

filtering alters the original profile. The figure describes the

latitudinal profiles of um,k() both before (dotted) and after

(solid for finite difference, dashed for finite element)

filtering of computational modes. The integrity of the profile

is essentially maintained, but extremes are smoothed. This

indicates the impact of the 4th- order finite difference operator

as well as the finite-element operator on the profile and how the

computational model is able to deal with extreme latitudinal

fluctuations which are actually observed. By filtering out

unmanageable fluctuations, perhaps these factors will not impose

strongly on the nonlinear progression of the solution. The

comparable results between the finite-element system and the 4-th

order system exist because their physical modes are so similar.

4 -. ... -- --- -- -- .
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7. Nonlinear integrations

The computational modes identified in the previous sections

have their impact during a nonlinear integration of the equations

of motion. To assess this impact, we propose to integrate the

nonlinear version of our linear system of equations as first

presented by Eqs. (1). Our intent is to define the effects of

latitudinal space truncation, so we may represent our equations

in terms of planetary wave numbers (spectral expansion) and in

terms of the model's vertical modes.

Since we have identified the vertical modes, upon which the

wind and height fields depend, with the vectors Gk(O), we may

expand those variables in terms of the G vectors;

V = E VkGk(o) (28)
k

= E *kGk(o)

k

where the vectors Gk satisfy the equation,

a ( aGk = Gk

30 N2 3 Ck2

and

E Gk(O i ) Gk,(ai) = 6kk, (29).
i

The prediction equations as nonlinear forms of (7) may be written

as

_ _ _ _ __. . .. d ,
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E + fk x V + V = -V.V V
a a

a ( a2 V .V a (I- V.V (0

N N (30).

If we neglect vertical advection, (30) represents a set of three

nonlinear equations to predict V and *. We may now substitute

the expansion in vertical modes given by (28) into Eqs. (30).

Utilizing the orthogonality of these modes, we will multiply by

each mode in turn and sum over all points in the vertical. This

yields,

av k  +at fk x Vk + V k'kk',k''Vkt'VVk11

k 2
+ C V.V k kk,kk'' k'' V k' (31).
~~T k k ki l k

cgk,k1,k'' E Gk(oi)Gk'( i)Gk''(0i)
1

ck Ckck~ ,k 2 G k ( ai ) Ck  ( a )G k  ( ao )k 2
''1, F ___ k' i k'1 i _7 ak,k',k''

i C k, C k,

It is clear from (31) that because of nonlinearity, the vertical

modes are interactive and that the amplitude functions

Vk and *k must be calculated for all k at any time before time

extrapolation can continue to the next time level. To simplify

the calculation but still maintain the impact of non- linearity

on the evolution of the latitudinal computational modes, let us

reduce the system to a "shallow-water" one, by simply presuming

that only one vertical mode exists in the expansion of (28).

*4•
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nir this constraint the summation on the right hand side of

(31) vanishts and the coefticients become,

a k Z G3( (32).i

Since we shall now consider each vertical mode k) individually,

no loss of generality will be suffered if we drop the "k"

subscript. Let us now refer back to Eq. (16) where we have

expanded in longitudinal waves denoted by the wave number m.

Furthermore we can recall the vector of variables X as it is

defined for each wave (m) and one vertical mode (k). Using the

operator matrix, A, and noting the orthogonality of the Fourier

functions, system (31) can be rewritten as follows;

q uax
- + iA(m,k, )X = qv - (33).

This equation applies for each wave (m) and mode (k). The non-

linear vector on the right hand side of (33) is defined as

follows:

ek fe- dX u + V au uv tan]

--k e-imd[ u av v 3V 2 tank Lacos-o 3X- a a a J

-k fe- im d [  u + v -T
( C k  acos ax a

It is an easy matter to remove the X-dependence from the q's by

."9 __ ____ --
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integration. Because of the nonlinearity, as we expand V or in

m, the q's will generate a double sum over all wave numbers.

However, orthognality requires the simple addition rule to

apply. Therefore, the double sums are reduced to sinqle ones

over all wave numbers, since we have that m''=m-m'. As an

example,

-CSk oe-imX u au dX = -2n i ak m£ m'U (35).
f acoso -A acosb k m m m-m

Eq. (35) represents the first member of qu as described by (34)

and shows clearly the nonlinearity. It must be noted that the

summation goes over all allowed values of m', here chosen

as Im'1420 and that m in (35) refers to the wave number (W)

associated with the vector - in Eq. (33).

Although it is now possible to expand (33) in terms of the

latitudinal modal functions developed for the linear problem, we

shall simply convert the system by numerical means to a

difference system using (a) 4th-order differencing in latitude or

(b) finite-element differencing. Both these procedures have been

described in detail in Appendix C and need not be reviewed

here. However, it should be evident that the left hand side of

(35) becomes a matrix set over all latitudinal points and would

be satisfied by the normal modes (including computational modes)

if nonlinearity did not exist. Thus the vector 5 must be

expanded at all latitudinal qrid points and the appropriate

difference operator applied. Because of (34) and (35) we see

that all grid points and all waves interact to affect any wave at

" -- ... . . i i ' _.



44

a particular ,rid-point.

Given an initial state represented by x(t=O) for all grid

points and planetary waves, as well as for the specified vertical

mode, the value of xit) can be determined by a suitable time

stcppinq procedure. To accinplish this, we utilized the well

tested leapfrog scheme, using a multiple forward start.

At this point the development of initialization as discussed

in the previous section comes into play. System (33) in its

final form for integration clearly involves computational modes;

indeed we have isolated their properties with great care. We

have also, however, removed the contributions to these

computational modes from the initial data. Thus the integrations

should begin without computational modes, but it is clear to see

that because of the vector 0, these modes will be regenerated

during the integration. How rapidly this happens and how

strongly it depends on the numerical form of the equations will

be established by integrating system (33) for both numerical

methods with and without the filtering of the computational

modes. The growth of the modes can clearly be identified if,

during integration, they are monitored. Thus we will be able to

establish their impact and the benefit of filtering

(initialization). Finally, if growth of the computational modes

is rapid, they may be filtered periodically during the

integration thereby inhibiting their effect.

Computer programs for the numerical integration of (33) have

been prepared and checked, but no successful integrations have

yet been run. We cannot therefore report on these experiments,
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although we are actively workingi on this proect and hoiw to

complete it soon.

8. Conclusion

In our search to isolate and define computational errors in

atmospheric modeling with intent to rOefine the "best*

computational schemes, we have uncovrred a method which, althujuqh

not yielding the universally best nufferical scheme, will

nevertheless provide the needed insight to choose the proper

scheme for any particular model. By model we mean here the

complete set of model equations including all physics, dynamics,

boundary and initial conditions. The procedure is oriented

toward space truncation and we have focussed on truncation in the

horizontal rather than the vertical. The essence of the

technique is to define the normal modes of the linearized version

of the model, to expand the initial conditions in terms of these

modes, to separate the physical from computational contributions,

and to filter the computational modes from the initial data. The

model is then integrated with the filtered data and refiltered

during integration, as needed.

The primary issues associated with this process are the

selection of normal modes for the linear model, the

identification of computational modes, and the filtering of the

initial data. We have described ths- procedures in detail by

application to a specific model ind by using a high quality

global data set. The model used is |ised on the current non-

forced GLAS lobal model usinj o-coorlinates in the vertical.

I e
q--______-_ --
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Cunvo.nt onaI looundary cL)i.Ji if)ns .sr-- ip. o-.I Mt the top atd

I)ott m o t tht. oel . The."- emndit i -. lJ oive comL- (avtboue;r'

prolbably not too signi aic4nt ) impact ti otr conclusions, and mori

re.list¢ic top boundary conditions art- dlsis-4 in a companion

report. The implications ot vertlcal dilrcntInq as chosen here

also deserve additional stuly. but atlaing varlftions in that

proceJure may not have a dr.smatic Oftect on o"r findings.

The hnrizontal eqluatiols, as separatvi from the vertical

ones, have themselves been separated into lonqitidinal and

latitudinal modes. Since we are hert, interested in qobal

prediction, we have used th,- periodicity properties of the

earth's atmosphere in lonqitude to r' present that coordinate by

Fourier series, thereby separatinq not a set of equations in

latitude and time_ for each :danetary wave in lonqitude. 'his

process inhibits computatlonal errors due to differencing in

lonqitude, but aliasing errirs may sti'l have an effect in a

nonlinear calculation, due to series truncation. The normal

modes in latitude may be established once those equations

(dependino as indicated on aoth a planetary wave number and a

vertical mode) have been coiverted by some computational

approximation to numerical form.

We have use.d two independent computational methods to

trminsforni these oquations; 3 fourth-order finite difference

qcYIlf-e and ~ finite-elemont method, both on equal Irids of five

.e



e~lt os As evvet~ tolt #*~rj 10uIt-S qla Awvelj )M.~ 1I

cot t shows tr ct'C COMP. I. v' goo 6it.It I' 1h I ?E tv *44- "V6t

(4nLOC40Ve. tft t Lt-v1Ir. ertr- j''4j ,j r (1 ii'ji

o rpor at. as on*I M44P 16 iv-~- Co I qwyc-du *r~c~r .

Ce~n fOM desa iOno Ih mola *fr Cia 3 i'trn. 4~ at- a v k" v~ -tI

b ho T e tlvhw tfre vlch~t i)~~~~-~ Wtar h r X1 1

CO~~~wtoped ~ ~ frmVwh-- ia wl- e AI tml f !-c ~q o

the iffren ial -<tatio % a*n. If hey +.#,tl C~v ;Vt- fqcU



L kc r !i"fj*4 3A~ r'&. kxt* o:J. c~ I.j W~ * 4+zw lt * 'CA *a-

4!(0 in r~' P ~ j~r oo Ag i 0 At IE tc~w. I t A a t-tC u ~ t?

ai%, 44944-f vjj rp-~fI-f we jeomft as.' sorrpx o 4%64 (l te y ar't-

1 6 L r*0' I L c 4pU -. 41'.~c I 1c a tf*f 3- IC .

4ft t 1-4f MOOI 'M44 9 at 9i a a f-4 f tftc~f 41 ce e



49

It tg O~*t eoiietr~ton th~t tli procedure identified and

'JtlefJ tol thi~s rk:Port shoqldl prove. valuable to the pjre'iictaon

,:tjmt~nty re<4eLfq t~he ett&'cvs of ilifterencinq

4protix4tiofl. W"M-f k~ir tt-%t inteqssttons are compl('ted, wf,

optL! *pply tow prcte14re to 4 compltEx. forced mod!el which is

co4(treatl isrtewa t VIA. na!1y. 41thoutjh our efforts

h-4ve ro~oe Mwi )Ifobal I"0ts. we t- itevo that with some

in~llJ.s os i*r scheme~ Can also tv appaieJ succe~ssfully to
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Appendix A. The thermodynamic equation

Linearizing but retdining the vertical advection term, the

thermodynamic equation (5) becomes

34nO + .3nO 0+ 0 - =(A-I .

From the Poisson equation,

Po R/Cp
0 -- T( P--) RCP (Po 19 1000 rob)

and using the equation of state

pQ = RT,

one has

PC p~/C p a PR/ P

V ~ R

and thus

3nO CvI I A (A-2)
" - - A aa

nO Cv 1 3(A-3)
P

in which perturbation quantities w and a are negligible when

compared to quantities of the basic state n and A,

" b -- - -



respectively. Also, from Fq. (6) and the perturbation equation

of (4) one obtains

2 A 3
" - * ('- A s-o .. ~

Adding these two equations yields

30 .f 1 (-' )2*+03 (A-4).

Finally, by substituting Fqs. (A-2), (A-3) and (A-4) into (A-i),

one gets a thermodynamic equation with the following form,

V I) 1 32 A 3) Cv o aA 0

p T)

or

a2 _N2
-N W -BW (A-5)

where

r2 0 -AR(Cp1 1 3A

and

+l 0 a

.4 . _________________________________I
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Appendix B. Solution of the vertical problem

The second order finite-difference equations for solving H

are

1 (-2H + 1 =I F at o = 22 --14 )
B2 (Ao) c

- "(H. - 2H. + H ) 1 H. at a.
. (d o)2 2 i+2 = -Cg

i = 4,6,8,...16

2I o (-H16 + H20)= H18  at o= 1
18 18

ci

where ao = and Bi , Hi and Ai are values at i  IT-' 1 even.

Substituting H20 = 2H18 - H,6 into the last equation one has the

tri-diagonal coefficient matrix

2 1 0

2 2

1 1 2 1

_ Ao Ac

~112
Z =H i , i = 4,6,8,...16.

H18/
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To solve for G, the centered finite-difference scheme is

applied to th expanded for:n of Eq. (11);

([32G a XnB) ]Gi G
- - -2

at interior levels. The discretized equations are

1 G
(-G +G) -- t at=

2 1 3 c

- 6Bi 1i
I (G - 2G.+ G ) - =( GG at o=

i-2L 1 i+2 Aa i-2 i2 _ i
1 (Aa) 2 c 18

(I1 1 17
B 1 1(G15_G17) - TG 18 =I.17 at o= 17
16 18 c

where 6Bi/Ao is the finite difference form for XnB The first

and last of the above three equations were established by

evaluating Eq. (11) at a=1 and a=17 respectively, and

incorporating the appropriate boundary conditions at

o=O and a=l (i=18), the latter given by Eq. (13). For the last

equation, G1 8 = 2G1 7 - G1 6 and G1 6 = (l/2)(GI 7+GI 5 ) must be

used. One has the tri-diagonal coefficient matrix



0
2 2

M - 4+Aa6B- -8 4-A6B,

- A 2~TB

0 A+ AG 1 3

Z= '= 3,5,7,...15.
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Appendix C. Solution of the horizontal modes

The horizontal modes for given equivalent depth (denoted c)

and for specified longitudinal wavenumber (m) are determined from

Eq. (17) which is given as

(A-vI)j = 0,

0 f mc
acos u

c - and v

mc -c 3 ()cos)a C Os - ac o s 3 "0 0

where we suppress the subscript m on the vector elements of x

After discretization, the veccor X of unknowns consists of Il1

elements for a 50 latitude incremenl- including polar values.

Each element in A forms a square block of size 37. Moreover,

non-derivative blocks are diagonal. Using the 4th-order finite

differencing scheme given as

3xj

ax 4 +l- x j - 1 1 " 1 J+2-Xj-2

1x j2+ 2 - 2 x + I
Y j)± + 2j-l =yW~ xj-2

]C
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a band coefficient matrix with width 5 (zero diagonal except the

two corners) is formed for a derivative block. More

specificially, and to see how the boundary conditions are applied

to the numerical scheme, let us write down the basic finite

difference formula at any latitude other than the pole; e.g.,

85'N:

85 95-90+80-75

where Y 1 Ay =50 and subscripts indicate degrees of

latitude, northern hemisphere. For those grid point values at

latitudes greater than 900, one must use the following expression

which is always true and is thus unlike the given boundary

conditions which only hold at the poles. If X and y represent

longitude and latitude, respectively, one can show that

v(X,y) = -(-l) mv(A+ , y)

*(X,y) = (-1) *(X+, y)

by referring to the Fourier expansion given in Eq. (16) and using

e im(A+r) = (-l)meimA

A negative sign is needed in the v-formula because the reference

frame changes direction across the pole. For example,

v9 5 = -(-1)my8 5

95= (-1m *85.
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Owing to the differences of boundary conditions, there are three

cases to consider. Discussion is focused on the northpole. The

situation at the southpole is similar.

Case 1. m>2: all three unknowns vanish at the pole.

Finite differencing is needed only between 85ON and 850 S.

Beginning from the northernmost point the first three grid points

yield

,I) = y(-*+ - +
'5y 85 -95+8 9 0 -8*80+ 75)

= Y( 0 8 5-8*80 +* 7 5 ) +/-: if m odd/even

-y 80 = - 9 0 +8 8 5  7570
= y( +8*8 5  -8 75+*70 )

'-y 75 = ( 85+8'80 -8470 +65) "

Hence, the upper left corner of the 2 a block has the forma 'FT

±l -8 1 'p8 5

c 8 0 -8 1 *8 (C-)
a -1 8 0 -8 1 'p75 a -wc

the band coefficient matrix alluded to earlier. For the other

derivative term, one has, noting that y=ao,
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I~ 5i

~''5 os~7 v9 cost 9 5so v9 cost9  80,

-y(±v 85 -8v e cot +v 75 cot .
80CS8 5  CS 8 5

3 vcoso)] = 0~ 8 ( -v9 cost9 +8v85 cost 85 8v75 coso 5 +v7 cost7

= Y(v COS08 5 - 8v 75Cos 75 +V Cos 07 0

y885 cost8  cos 70 CO- 8

Except for ratios of cosines, these equations give the same

coefficient matrix as W.

Case 2. m=0: does not vanish at the pole.

For the first derivative term one has,

=4~ = ( + -* +Ty 85 95 8J 90 80 5

= Y(8* 90-'85-C*480+4'75)

Ty 80 857447)

It is seen that there will be an extra column for coefficients of

1 90 added to of Eq. (C-I), expanding its dimension to

35x37. For the other derivative termr, finite differencing at the

polo is needed. To achieve this, we write
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I (vcoso) 3(vcos). 3z

treating z=sino as the independent variaole and p=vcoso as the

dependent one. Using a second order Taylor's expansion

S+()(Z 
s85 
Z9 0 )2Pb, = 90+ -)90(Z85-90) _-_7 9 0 2

+3+2p (Z80-Z9 o)2

80 9 Po+yZ 90 Z80 - 90  7 90  "* '3z

32p) ap
and eliminating --z 90' one can solve for T )90

P l-sin 80  cos$85 )-sin 8 5  cos 8 0  )

Tz )90 - s i n o8 5 -sin*8 0 I-si-n 8 5 )v85 -n 80-sin# 85 f-sin 8 0 )v 8 0 "

Hence, there will be an extra row for coefficients of v85 and v80

added to the corresponding block of case 1, expanding its

dimension to 37x35. The chtiracteristics of the completed

coefficient matrix is sketched below.

r



00

a zeros

0 band

row 7!1___ xx

0

row )07 ______ I

Case 3. m-1: only * vanishes at the nolro.

one needs a finitre-difcrenc. formi for Zat thr-- polt'.

choose a one-sided, 4th-orcher sche~me

30 4 I'9O4'*5 1 90-*M0
w-4190 - JS0 us

= Y(-l64,85 +2*80 ).

The other derivative tr~rrn is first vxnarnded bretort- beci-io

approximated by finite differencini:

I I a (vcoso, 8  TI vton.s%
,Coss J- 95 Tf S

Y(_v 9 5+PV9 0 -Hv 9 0 +v 7 S)-V8 5 tan6RrI

B Yv 9 f- (Y *tan 4pR)v~r-4'f vp0 >+-fV_5

The rem~aininri discrt~tizet4 ' iiiatiOIIS arr ioontical to thos- in

__IP..



the, poit. t, ,ilii it ttit ett i setentl to veI '45 I fle w1 i~r VaI 1 :.

th'r'-rore- r.-ffovtet. 'mht- comoet ;it'~r~stjrq .,t C(Kti c~w i t

ma ~t r t R i ven ie low.

n 0
0

row 36 x x

row 72  1IIII]3
row 107_ _

Vor tlic f iitc-crvr it rw't hod, * rch depenrient variahle is

-xp.rvff- in i~ set of lin#c.:r qpace function-;, T(s),



wheret 4Ve rd t4tC uflcti.-fti lor 'Aizl f!rsq~'it-

N'tL~H thtw lildopt- sbciti p~tqo h

vl~cto0 6' - us i~ il rl -) int 7 n ufi-y

by~~~~~ acso th I tmoy~v

Hi -io#'* I 7S

-avcqt mc~ Pi-1
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2 ~ ~ ~ ~.)ft gy ii ~ ~ge .~ro.the discretized

Wh C'. -4 4 0 j_ . 0...s# .. *,'? , aj? and similarly

1'.,g V *ni o The tIovsn .t he coet ticient matrix are to be

ccrt "ced al filews. 4n. Multiplies '*ach te~rm by B k(0) ani

'1rr thr Jor t1wn. For inatance. fro~m the first term

- ~ CO 1os lwi))ju r Mitd -v Sk kU

whe~ r

it~~' a k-l. i~lr

f atiain25F\ R Js

nc-
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It must be pointed out that

= w/2 _ Ck a"U(B cos.)d.kj = /2

w/2 ./2 B

= -cB IB.cosf, w/ + fJ/ cRl.cosf 3B kkj -w/2 -r/2 1

k+1Bk

f=k+l ccosdB3B k d* -w-
Ok-l 7 jk"

This shows that matrices W and W are the transpose of one

another. Once again, all blocks are square and tridiagondl with

dimensions of 35 provided that all variables vanish at the

pole. Furthermore, Eq. (C.3) can be put in the following

standard form:

(Q-vI)x = 0 (C-4)

( 0S -1 I S-I w

S-1T S-iT 0

and S- 1 is the inverse matrix of S.

For the case of m=O, does not vanish at the poles. The

bottom-right S-block of (C.3) is consequently expanded to 37x37,

W to 35x37 and W4 to 37x35. One still obtains a standard

eigenproblem. In the case of m=l, u and v have non-zero boundary

values. The A matrix is thereby expanded to (37+37+35)2 and the

S q C
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details of (C.4) look as fo.lows:

T Vx70 0

17 Tx 3-7 o 371

0 1 37x37 0 v 3 7

0 0 1 35x35 *35/ 0'
377x37 37x37 S 37 X3 7  u 3 7

S7 7  0737x37 W37 3357

S 37x37T S I 3735x35 35x37 35x35 35x37 0 *35

Finally, using the boundary conditions of uI = -vl and u 3 7  V37,

one can shift column 1 and 37 to 38 and 74, respectively, then

remove columns and rows of I and 37. The resulting system has

dimensions of 107.
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Appendix D. The Shooting Method

Rewrite the differential equations (18) in matrix form as

and approximate by an implicit finito-difference scheme such that

=+ v E Vj+l + vj
Ay E Ej+/2 2

or

j+ (I - E1 E+/2 (I + Ej+1/2)V j  (D.1)

= F(yj+I/ 2 ;v ).j

Twhere vi = [u(yj), v(yj) T and F is a 2x2 matrix with elements

functionally dependent on Yj I/2 and v In addition, the rate

of change of vj with respect to v at each grid point is computed

from

= + F(D) (D.2).

At the end of the integration (y=yj), V. can be forced to

converge to VB (the value specified by the boundary condition) by

a modified frequency, yM, according to Newton's method. Using a

numerical approach,

* 4 '-- * -- ~ ------ ---
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'B D-3).3 m V fm

vrn may be calculated from (D'-3) and the derivative may be

calculated from (D-2). Since we only need the boundary value

(point J), (D-2) is integrated along with v. noting only that

-=o vanishes because of the fixed boundary (initial) value.

To cycle the shooting method, the new value (v M) is used in (D-

1).
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Ficlure Captions

"iq. 1 Vertical structures of the vertical motion field. There

are 9 eigenvectors solved from the H-equation (Eq. 10),

ordered by decreasing equivalent depth (left to right,

top to bottom). The top (ordinate level 1) is

at o = and the bottom o = 1. All unmarked abscissas

range between *1.

Fig. 2 Vertical structures of the wind and height fields.

There are 9 eigenvectors solved from the G-equation (Eq.

11), ordered by decreasing equivalent depth. Level I is
1 17

at o -R level 9 at -, , and interior levels are
at2j+l

at 18

Fig. 3 Comparison of modes for 50 and 100 latitudinal

increment.

Fig. 4 Boundary modes for channel model between 600 N and 600 S.

Fig. 5 Low-order Rossby modes as they depend on model geometry.

Fiq. 6 Eigenfrequencies for longitudinal wavenumbers m = 0 and

1 with equivalent depth 9.555 km (external modes). The

abscissa is the order of magnitude of frequency in

sec - 1. The ordinate is the order of frequencies from

the most negative (#I) to the most positive (#107).

. ,
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First and last 35 frequencies represent westward and

eastward gravity modes, respectively. The la. t mode

with negative frequency is #58. There are no values in

the range of Rossby modes from #36 to #72 for m = 0.

Elsewhere, if neighborinq values are too clos , only one

of them is plotted.

Fig. 7 Same as Fig. 6 except for m = 2, 6, 10. Zero's are used

for m = 10.

Fig. 8 Same as Fig. 6 except for m=6. Frequencies for all 9

equivalent depths are plotted (finite difference).

Fig. 9 Same as Fig. 8 except that the finite element method is

used to establish the eigenproblem. Notice that there

are more negative and relatively less positive Rossby

modes than for the finite difference result.

Fig. 10 Latitudinal eigenstructures of u for m = 6 and

equivalent depth 9.555 km. Shown are westward gravity

modes from #21 to #35, each plotted from pole-to-pole at

a 50 increment. Whether a mode is computational or

physical is denoted by a c or a p and they are

sequenced.

Fig. 11 Same as Fig. 10 except for results from the finite

element method.

Fig. 12 Amplitudes of real data set projections onto the

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.1



72

latitudinal modes of the 4-th order difference model for

m = 6 and equivalent depth 9.555 km. The abscissa

represents order of magnitude of amplitude and the

ordinate gives order number of modes. Physical modes

are indicated by connecting segments.

Fig. 13 Same as Fig. 12 except for the finite-element odel

modes.

Fig. 14 Comparison of original and reconstructed latitudinal

profiles. Dotted line is the real part of observed u

after projecting onto the first (external) vertical mode

for m=6. Solid line is the reconstructed profile by

removing amplitudes of computational modes using the

finite difference method for normal mode analysis.

Broken line is the reconstructed profile based on

filtering with the finite element modes.

I".. ._ . _
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t' Level
A 0 V 0 IA A I J -

II

Fig. 1 Vertical structures of the vrtical motion field. There rt, ') ,,joen-

vectors solved from the H-equation (Lq. is), ordered by d,creasing

equivalent depth (left to right, to|, to bottom). The toi(,ordinate.
1

level 1) is at ,, = -- and the bo~ttom ,. = . All unmarked alscisas

ranqc between * I.

-~ .AF
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SLevel

I I I I I I I I TI

~'.2 'Trt icd I structur'~i of the wind and hviqht f i ods. There are 9
o ziinv-ctor!; solved from~ the G-eqi-t ion (F-q. 11) ,ordered by

decrea',inq q quivaltent del~t:-i. Level 1 is at c L level 9 at

and intorior 1vvels arv at 18 18
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BOUNDARY MODES
(CURVATURE, 60*N- 60*S)

I

EXTERNAL MOOD E

WAVE 01

PO~ INTERNAL MCCC

ij;. 4 Boundary modes for channel mnod(-1 bctwen 60'N and 60*S.

.
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EXTERNAL MODE Ist INTERNAL MODE

- 6-0w lef -afs a

ft"W.

Fiq. 5 Low-ord-r i~V;~o'~ -~ t'loy (iTclf 4, .'04! ...... 4.r.
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5S.6

73-

1071

-6 - -4 -3

ju' ~ n -t' for Io ~~dr~lwaw'nunhers m f n iheuvi rt

'F, (@extornal I t A. 7 he abscissa is the order of macnitudc

nt-, m~fl *, t- 71. nnimals, i is th, order of frequencies; from tho

t e~ti.(Wj to -i: x,;t h it ive (m1(7) . *rirrt and last 31

r.~ r~, ~tw, ;t .. id i-,(! .vt-wardl gravi ty modos, resivect-volNy.

:n lI mo.i, wilf t - r.ativ fr. :'qrwv i. ' Fi. There are no valucF- in

tri, rari, Nf ~:Ivmodi. "fri n 3 to (,272 f ro m 0. Else~where, if

ui~iior in,; va I ti. are ,oqr. clo:,. ojip1: ont, of them is plotted.

.ML



79

35-2

]- I :232

a S

7121

t I

* a

i~~r.~ 7 m

a a. a
a a°a.

54 * I a.

°l~Il
e •, :3

liii

': 21

105 • , I '
-7 -6 -5 -4 -3

ica . 7 Sam', aS Fiq. , ,.xr',. t 'r,, " .' , '. ". .'" . , : ,, ,t ..



80

" 1 

.3 1.,

1.s 3 " 3 a 1

'71 -

V2 3

, t j'4 ," 24

*8 7 *6 44

* . , f . 1. ,. .

a,;~ ~ ~ ';, ;.ij (,, exctfrFeuece o l quvln e h

54 iit difI: :4 P .4)3il

548 ,," *I 4

* ** ,, *48

.... ?8

:'P . 4 1-
" I I

U I j

105 . 1,2 ,I I' ,:
-8 -7 -6 -5 - - -3

i'i:.:', :;,m, a j'q(. () cci t f:or :; -- (. Freuuencies f[or al] n equivalent deiths

• r.Tlotted ( fini to di ffer >nc.')•



;1000

0 4

4 32 8

105
,7 -6 I 2

Fig. ~ ~ ~ ~ : 9 Saea i .8ecp ht' h ii( lmn obd - sdt ,.tllq

the~~~~~~~ eiepoh~m Notic thtteoaomr ecaieadr*tv

less osit v- Po sby odea than fo ansf ni o ki f r TCr~



82

(r, C,
C)

:

Ln 0

4-- I In r

-V\, CV . aKk v~l u . C, 4-; m

\\Pwvv4-4

___ ___ __ C,

*-0 cr
:3 Q,

_ $a 4 0

VV) tr a.

C a a-

-3 -WI E

-W C.1 u
-W ro

M ) U .'C



A

C,

'4J

1)

I A A* A

00

A A A AA t



84

9.,

14.
10-

22-

2S.
12.

'32

34*

365.

7*

4.

so.

53.

52. .

30.

3* 4
34.

,76

69-4

70*

71-

72*

4.

76*

49.

7O.

sI.

o: \

52. 4

,3.
vs.
97.
v'.
10,.
lot- 459O* 4

I

-- 0.5

Fiq. 12 Amplitudes of real data set p rojections onto the latitudinal modes of

th~e 4th order difference model for m = 6 and equivalent depth 9.555 kmn.

Tihe abscissa rep~resents order of man nitude of amplitude and the ordinate

gives order number of modos. Physical modes are indicated by connect-

i nq seciments.
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Fig. 13 Same as; Fiq . 12 ('xc(,I t for the f flit ('t ii met mnode mde
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